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Abstract

This paper proposes a method for segmenting the airways from CT scans of the chest to obtain a 3D model that can be used in the
virtual bronchoscopy for the exploration and the planning of paths to the lesions. The method is composed of 3 stages: a gross
segmentation that reconstructs the main airway tree using adaptive region growing, a finer segmentation that identifies any potential
airway region based on a 2D process that enhances bronchi walls using local information, and a final process to connect any isolated
bronchus to the main airways using a morphologic reconstruction process and a path planning technique. The paper includes two
examples for the evaluation and discussion of the proposal.

Keywords:
Airway segmentation, virtual bronchoscopy, region growing, bronchi wall detection, path planning.

1. Introduction

Bronchoscopy is an interventional medical procedure used
to analyze the tracheobronchial tree, mainly to obtain samples
from a specific lung site identified by chest X-ray computed to-
mography (CT) for the diagnosis of lung cancer. The planning
of the path to the lesion is usually done on 2D images, which
is difficult, error prone and may result in long execution times
of the bronchoscopy. Virtual Bronchoscopy (VB) can improve
this. VB it is a computer-generated 3D reconstruction that al-
lows medical staff to explore interactively the tracheobronchial
tree and also automatically obtain a path to the lesion. Re-
cent clinical studies [1] have proved that VB navigation system
shortens the examination and operation times.

A key point in VB is, therefore, the reconstruction of a 3D
model of the tracheobronchial tree from the CT scans. Since
manual segmentation is prohibitively time consuming, auto-
matic or semi-automatic methods are necessary, which poses a
difficult and challenging problem. The difficulty arises because
it is not easy to implement efficient and flexible algorithms to
cope with all possible clinically relevant cases. Bronchi appear
on CT images as dark regions (airway lumen) surrounded by a
clear region (the airway wall), but, due to noise, low definition
scanner or interpolation artifacts for small-diameter segments,
their radio-density vary across the image, and therefore it is not
possible to define a global threshold to segment them all. More-
over, the completeness of the reconstruction is becoming even
more important now that the new ultra-thin bronchoscopes per-
mit exploration through bronchi as small as 2 mm in diameter.

1.1. Related work

Since the early nineties, several approaches have been pro-
posed to solve the airway segmentation and reconstruction
problem. The most common are those based on region growing,

on mathematical morphology and on multi-rule or fuzzy logic
using anatomical knowledge.

Region growing is a procedure that groups pixels or sub-
regions into larger regions based on predefined criteria [2,
chap. 10]. This technique is maybe the most used in the field
of airway segmentation and many algorithms often include a
region-growing phase. The most common method locates the
seed at the beginning of the trachea and grows the region based
on voxel connectivity and on a threshold of the HU1 values.
Despite of its simplicity and velocity, 3D region growing suf-
fers from partial volume effects and noise, since it is based on
a global threshold used during the segmentation, and the “op-
timal” threshold for big airway differs a lot from the one re-
quired for small airways. The use of an inappropriate threshold
may result in the occurrence of parenchyma leakages, mainly
in noisy or low-contrasted images. A global threshold may be
determined either manually [3] or automatically, based, for in-
stance, on a repeated segmentation process [4]. Other alterna-
tives propose the subdivision of the image in diferent regions,
sometimes called volumes of interest, where the threshold is lo-
cally adapted [5, 6, 7]. The occurrence of leakages can also be
reduced if algorithms to detect bronchi walls, as that proposed
in [8], are used as a pre-processing step.

Airway segmentation methods using mathematical morphol-
ogy [9] are also very common. These methods usually start
searching for candidate airways using binary or gray-scale mor-
phologic operations and, then, exclude the false candidates with
a 3D reconstruction or analyzing the 3D relationships and shape
properties [10]. These techniques are also combined with re-
gion growing methods, i.e. a first region growing step is per-
formed to segment the trachea and biggest bronchi and then

1HU stands for Hounsfield Units, that is the scale that measures the radio-
density. The darker voxels correspond to the air, that has a value of -1000 HU.

August 26, 2013



a second step copes with the segmentation of finer bronchi
using the morphological gradient (the difference between 3D
greyscale dilation and 3D greyscale erosion) [11], or using a
morphological filtering based on a closing with structure el-
ements of different sizes, and a reconstruction applied to all
slices in all the three planes: axial, sagittal and coronal [12].

Rule-based or fuzzy logic methods have also been proposed,
which allow the use of anatomical knowledge of the airway
tree. For instance, [13] described a rule-based method based
on a combination of 3D seeded region growing that is used to
identify large airways, rule-based 2D segmentation of individ-
ual CT slices to identify probable locations of smaller diameter
airways, and merging of airway regions across the 3D set of
slices. The work in [14] refined the method of [13] improv-
ing the specificity of the rules introducing fuzzy logic tech-
niques. Fuzzy logic has also been used in [15] and [16] to
define a multiseeded fuzzy connectivity functions to segment
voxels as lumen or wall, using different affinity relations like
homogeneity-based affinity to detect similarity of intensity val-
ues over a neighborhood, or directional affinity to indicate the
growing direction of the airway being reconstructed.

Many of the previous methods and techniques described
above result in the main airway tree plus isolated non-connected
branches. Therefore, some approaches include a final connec-
tion step. For instance, in [17] tubular structures are detected
in the data volume and then the different structures are con-
nected together according to branching angle (angle between
the central axis of the two branches), branch radius and dis-
tance. A more sophisticated and precise method [18] searches
for new candidates, calculates the cross sectional surfaces of
the branches and connects the disjoint branches minimizing a
connection cost based on the directions of the branches to be
connected, the gray values of the voxels and other specific char-
acteristics. The connection is made interpolating the cross sec-
tional surfaces.

The topological and geometrical correctness has also been
tackled, like the work in [19] that presents a method to guar-
antee that airway segmentations do not have loops or invalid
voxel-to-voxel connections, or the work in [20] that presents
an algorithm where surface patches are constructed adaptively
based on the number of elemental points, leading to to the elim-
ination of geometrical distortions usually occurring at small
bronchi.

1.2. Proposal Overview

The paper presents a method for the 3D reconstruction of the
tracheobronchial tree from the chest CT images that, after the
selection of the lung region and the performance of some basic
filtering, is organized in three stages:

1) A first stage, called raw segmentation, devoted to segment
the biggest airways using a region growing method with
adaptive thresholds.

2) A second stage, called fine segmentation, devoted to detect
any small region that can be segmented as airways based
on a 2D process that first enhances bronchi walls using

local information, and then executes a basic segmentation
and filtering process.

3) A third stage, called reconstruction, devoted to connect
any isolated bronchus to the main airways. It first uses a
morphological reconstruction process, and then a proce-
dure based on a path planning technique considering prox-
imity and directional information as well as the gray values
of the image.

The proposal is framed within a VB system described in
[21], that permitted a guided navigation using a haptic device.
The system included three main modules: a simple reconstruc-
tion module based on morphological processing to obtain a 3D
model of the airways, a path planning module to find a path
from the trachea to the lesion taking into account the geome-
try and the kinematic constraints of the bronchoscope and de-
tailed in [22], and a navigation module using a haptic device
that receives guiding forces to follow the computed path and
whose movements are constrained to mimick those allowed by
the bronchoscope. The present paper is a new proposal for the
reconstruction module, able to segment thinner bronchi and ob-
tain a more complete model of the tracheobronchial tree in or-
der to make the haptic-based VB system apt to simulate ultra-
thin bronchoscopies.

The paper is structured as follows. Section 2 describes the
pre-processing step to select the lung region and Sections 3, 4
and 5 describe, respectively the three stages of the proposal.
Finally Section 6 presents some examples and evaluates and
discusses the contribution.

2. Pre-processing

In order to reduce the processing time, the airway reconstruc-
tion algorithm must be focused only on the lung region, i.e. all
other parts found in the chest CT data must be cleared off. This
is done with a mask applied to the original CT data (Fig. 1a),
and that is computed as follows. The darkest part of the original
CT image is first obtained with a binarization operation using
a threshold between the minimum value of the image (i.e. -
1000 HU that correspond to the air) and -200 HU. As a result,
the lung region as well as those air regions exterior to the body
are segmented (Fig. 1b). After an opening operation that elimi-
nates little regions due to noise (Fig. 1c), the lung component is
recovered by a binary reconstruction operation from a seed lo-
cated at a point at the beginning of the trachea (Fig. 1d). Finally,
a closing operation with a big structuring element is performed
to close those holes corresponding to those structures inside the
lung but not selected due to the threshold operation (Fig. 1e).
The obtained image is the mask used to recover all the origi-
nal gray values of the whole lung region of the initial data set
(Fig. 1f). The pixels not belonging to the selected lung region
are labeled as background and will be not considered in the next
stages, shortening the computing time.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Lung region selection steps: (a) the original data set with all the chest
internal structures; (b) binarization; (c) filtering; (d) reconstruction of central
part; (e) obtained mask; (f) masked original image.

3. First stage: Raw Segmentation

The aim of this stage is to segment the biggest airways, which
are easier to detect because of their dimensions, the thickness
of their walls and the more homogeneous gray-scale values.
The procedure is a region growing with an adaptive threshold
to control parenchyma leakages. A marker image is initialized
with a mark at the beginning of the trachea, and an upper thresh-
old (U pp) is set to -700 HU, then the following two steps are
interleaved until no growing occurs (i.e. until the volume of the
marker image being grown keeps unchanged):

1. Growing step: Grows the marker image and computes the
increase in volume. The procedure:

• Dilates the marker image by 1, with a
6-neighborhood, and uses it to mask the origi-
nal CT image.

• Binarizes the masked image between -1000 HU and

C36 PA2

Figure 2: Result of the raw segmentation stage.

U pp and then makes a morphologic closing opera-
tion. The result is the new marker image.

• Computes the resulting volume increase, ∆Vi.

2. Leakage control step: Verifies if the ratio of volume in-
crease is above a given threshold, indicating that a leakage
is occurring. The procedure:

• Computes the explosion parameter as:

e =
∆Vi − ∆Vi−1

∆Vi−1
100 (1)

• Verifies if e > E and if this is the case then steps back
to the Growing step (deleting the last growth), and
decreases the upper threshold, i.e. U pp = U pp − δ,
to grow in a more conservative way the next time.

The value of E has been experimentally evaluated for several
data, being a value in the range [4.5, 5] a general good option.
Smaller values of E result on a more conservative behavior that
gives rise to a smaller reconstructed volume; higher values may
result in the occurrence of leakages. The value of δ is the thresh-
old discretization step; it is not a critical value and it is currently
set at δ = 15 as a good trade-off between accuracy and compu-
tational cost.

This step is not critical because, on the one hand, if it is too
conservative, those voxels that could have been segmented as
airways using other values are actually segmented in stage 2.
On the other hand, some small leakages may not be detected
because their growing is below the threshold, but in this case
the badly segmented voxels are usually eliminated in the recon-
struction step in stage 3.

As an example Fig. 2 shows the results obtained after apply-
ing the first stage to two cases, called C36 and PA2, that will
be used throughout the paper. It can be observed that the main
branches of the tracheobronchial tree have been reconstructed.

4. Second stage: Fine Segmentation

Once the biggest airways have been detected in the first
stage, the algorithm focuses on the segmentation of the small-
est bronchi. The proposal centers the attention in identifying
bronchi wall pixels and follows some ideas presented in [8].
The proposal has the following four steps (further detailed in
the subsections):
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1. 3-grade segmentation step: This step makes a 2D process-
ing of pixels one by one, excluding those pixels which
were labeled as airway lumen in the first stage. Since the
airway walls and vessels can be distinguished in the image
for their higher brightness with respect to the rest of the
lung, each pixel is compared with its neighborhood and,
according to that, one of the following “grades” are as-
signed to it:

• Grade 2: when the pixel is brighter than the sur-
rounding pixels (it is a bronchi wall or vessel pixel).

• Grade 1: when the pixel is not clearly darker nor
brighter than the surrounding pixels (it is an uncer-
tain pixel).

• Grade 0: when the pixel is darker than the surround-
ing pixels (it is an airway pixel).

2. Wall repair step: Since the previous step may end with in-
complete bronchi walls, i.e. with some wall pixels labeled
with grade 0, this step first detects those pixels where a
bronchi wall seems to be broken (i.e. those that satisfy a
given pattern) and then connect two of them if they are
close enough (marking with grade 1 those pixels which
connect them).

3. Decide step: A third step disambiguates the uncertainty of
pixels with grade 1 using intra-slice information.

4. Segmentation and filtering step: A final step enhances, on
the pre-processed input image, the gray-level of the pixels
graded as walls and then binarizes the resulting image to
segment the airways region, excluding those areas that are
too small (noise) or too large (parenchima).

4.1. 3-grade segmentation step

To determine the grade of a pixel, a set of segmentation func-
tions are computed on a set of six line projections defined within
a box centered at the pixel. Let p be a pixel of an axial plane
of the CT image and Ip be a 100 × 100 window centered at p.
Then, a projection Pα(p) is defined as the set of pixels (exclud-
ing p) that conform a (straight) line that passes by p forming an
angle α with the horizontal axis, and a segmentation function
s(Pα(p)) is defined weighting the mean, the minimum value and
the mid-point value of the pixels in Pα(p):

s(Pα(p)) = a ·mean(Pα(p)) + b ·min(Pα(p))+
+c · 1

2 (max(Pα(p)) +min(Pα(p))), (2)

with a, b and c fixed at a = 0.45, b = 0.35 and c = 0.2.
For each pixel, a set of six random projections are used with

angles (in degrees) equal to αi = 30i + β with i an integer
value in the range [0, 5] and β a random real value in the range
[0, 30). The function grade(p), shown below, applies the seg-
mentation function s(Pα(p)) to each projection and compares
the result with the gray value of p. If in all six cases the gray
value of p is greater than s(Pαi (p)), then p can be considered a
bronchi wall (grade(p) = 2); if the gray value of p is grater than
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Figure 3: Weight patterns to detect border pixels: If these values are masked by
the pixels shown in gray and summed, the result is either 8, 9 or 10, indicating
that the pixel in the center is a potential border pixel.

s(Pαi (p)) in only three or less cases, then p is considered air-
ways (grade(p) = 0); otherwise it is uncertain (grade(p) = 1),
i.e.:

grade(p) =


2 if Ip(p) > s(Pαi (p)) ∀i ∈ [0, 5]
0 if Ip(p) > s(Pαi (p)) in less than 4 directions
1 otherwise

(3)

Several window sizes have been tested, being the selected
one a good compromise between computational cost and the
capacity to capture the gray-level values of a big neighborhood
of a pixel. Also, several values for a, b and c have been tested
on several chosen regions; the selected values gave good results,
although these values are not critical.

4.2. Wall repair step

In low-contrasted parts it may happen that the grades la-
belization process does not detect all the wall pixels and, then,
some bronchi wall result to be incomplete. To compensate this
behavior, an automatic step is done to repair the wall by con-
necting close pixels, called border pixels, where a wall seems
to be broken. Border pixels are detected as follows. Let Mp

be a 3 × 3 binary mask centered at p such that Mp(q) = 0 if
grade(q) = 0 and Mp(q) = 1 otherwise, and let Ai i = 1..24
be the set of weight patterns shown in Fig. 3. If the result of
summing the nine values of the pixels after masking Ai by Mp

equals 8, 9 or 10, then pixel p is selected (this will happen when
the non-zero values of Mp correspond to those pixels shown in
gray in Fig. 3). Any pair of selected pixels that are less than
5 pixels apart, are considered border pixels (Fig. 4b) and are
connected by setting to grade 1 all those pixels that lie on the
segment between them (Fig. 4c).

4.3. Decide step

The third step of this stage is to disambiguate the unresolved
pixels (those with grade 1). This is done using intra-slice in-
formation, i.e. looking the grades of the pixels on the neighbor
slices. A decide function is defined to look, for each pixel p
with grade 1, the grades of the pixels above and below it (pa

and pb) and the 4-neighbors of pa and those of pb in the corre-
sponding slices. The grade of p is changed to 2 (i.e. to a wall
pixel) if at least two of the observed pixels (one from the slice
above and one from the slice below) have grade 2, otherwise it
is set to grade 0. Fig. 4d shows the results of the decide step,
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Figure 4: a) Part of a CT slice with two bronchi; b) Segmented pixels (grade
0 in black, grade 1 in red, grade 2 in white) and two pairs of border pixels
A-B and C-D (in orange) and the masks used to identify them; c) As a result
of the connection process, the pixels connecting the pairs of border pixels have
been set with grade 1 and are shown in red; d) Final decide step using intra-slice
information: the pixels closing the wall of bronchus 2 have correctly changed to
grade 2 and shown in white; other uncertain pixels have correctly been changed
to grade 0 and are shown in black.

that changed to grade 2 some of the uncertain pixels of the wall
of bronchus number 2, allowing to close the wall, and to grade 0
some others.

4.4. Segmentation and filtering step

The last step consists in first modifying, in the original image,
the gray value of the pixels labeled as walls, by increasing their
HU value. As an example, Fig. 5a shows a slice of the original
image and Fig. 5b the image with the enhanced walls that allow
to isolate the airways regions. Then, the image is binarized be-
tween -1000HU and -700HU and the result filtered to eliminate
regions that are too small (noise) or too big (parenchima), using
first an area filter, slice by slice, and then a volume filter. The
resulting regions are considered airway regions.

5. Third stage: Reconstruction

The reconstruction is devoted to merge the segmentation re-
sults of the two first stages. This is done in two steps:

1. Binary reconstruction step: A binary image is built with
all the voxels segmented as airways in the first two stages.
Then, a binary reconstruction is launched from a seed in
the trachea. The result is the main airway tree found in
stage 1 extended with the voxels segmented as airways in
stage 2 and that are already connected to it (Fig. 6 left).

a b

Figure 5: a) Original image; b) Image with enhanced walls.

C36C36

Figure 6: The regions segmented as airways in stage 2 can be divided into
those that are already connected to the main tree (green region on the left) and
the isolated ones (right). Those isolated regions that pass the shape and position
filtering are painted in white.

2. Connection step: All those voxels segmented as airway in
stage 2 but not connected to the main airway tree conform
the isolated airway regions (Fig. 6 right). This step tries to
connect them to the airway tree as follows:

(a) Interruption points detection: The points where the
branches of the main airway tree end are detected.

(b) Shape and position filter: Regions with a tubular
shape are characterized by having the first eigen-
value, λ1, resulting from the principal component
analysis (PCA) applied to their voxels, much larger
than the other two, λ2 and λ3. Therefore, those
regions where the first two eigenvalues are similar
(λ1/λ2 < 2) are discarded. Also, since this stage
tries to reconstruct broken bronchi, all those regions
that do not lie within a small neighborhood of the
interruption points are discarded too, because they
may not be part of the interrupted bronchi (this small
neighborhood has been defined with a 20 × 20 × 20
box, called neighboring box, that allows to recon-
struct gaps up to approximately 0.7cm). The regions
that pass the shape and position filtering are called
floating branches (white regions in Fig. 6 right).

(c) Connection process: The interruption points are con-
nected to the floating branches using path planning
techniques as detailed below.

As an example, Fig. 7(top) illustrates the result of the binary
reconstruction step for cases C36 and PA2, and Fig. 7(bottom)
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C36 PA2

C36 PA2

Figure 7: Top row: main trees after the extension; Bottom row: floating
branches (in white) to be connected to the main trees at the interrupt points
located at the center of the boxes.

the floating branches (in white) to be connected to the main
trees at the interrupt points located at the center of the boxes.

Path planning is a discipline in robotics devoted to the com-
putation of collision free paths for a robot from an initial to a
final configuration. Some approaches discretize the space and
compute a potential field on a grid, with a global minima at the
goal cell. Then the planning is reduced to the following of the
negated gradient of the potential field. One example is the nav-
igation function NF1 [23] that is obtained by computing the L1
distances from the goal cell by a wavefront propagation.

The connection process detailed here is a simpler and more
robust variant of the procedure presented in [24]. It uses a path
planning technique based on a modulation of the NF1, called
connection NF1. This modulation makes the propagation more
easy (by setting a lower potential value) along the direction of
the interrupted branch and along darker voxels (i.e. those more
prone to be airway voxels). For each interruption point, the con-
nection NF1 function is computed inside the neighboring box
centered at the point, provided that a floating branch partially
lies within the box. The computation is done as follows: the
potential of all the voxels of the neighboring box is initialized
to a high value, except for the voxel corresponding to the inter-
ruption point that is set at a zero potential; then, starting at the
interruption point, the potential is iteratively propagated from
one voxel to its 6-neighbor voxels with the following expres-
sion:

d j = min{d0
j , di + ∆}

∆ = 1 − ωGkG − ωθkθ > 0 (4)

where:

a

c d

b

Figure 8: a) Neighboring boxes centered at the interruption points (in red) and
the interrupted and floating branches to be connected; b) Values of the NF1 con-
nection function shown in colors for a given plane; c) Connection path found
following the negated gradient of the NF1 function; d) Reconstructed bronchi.

• di and d j are the potential values of two neighbor pixels,
and d0

j is the value of d j prior to the propagation of the
potential from di.

• kG is a value in the range [0, 1] that modulates the prop-
agation as a function of the gray level of the considered
voxel:

kG =
Gray(pi)

min∀p∈Box(pi) Gray(p)
(5)

i.e. the ratio between the gray level of the voxel and the
minimum gray value of the data set. Darker voxels result
in a higher value of kG and thus in a lower value of the
potential d j.

• kθ is a value in the range [−1, 1] that modulates the propa-
gation as a function of the angle θ between the direction of
the interruption branch and the vector from the interrup-
tion point to the voxel where the potential is being com-
puted:

kθ =
{
−1 if cos(θ) < 0
cos(θ) otherwise (6)

Voxels around the direction of the interrupted branch result
in a higher value of kθ and thus in a lower value of the
potential d j.

• ωG and ωθ are positive weights satisfying ωG + ωθ = W
with 0 < W < 1. Considering this constraint and the
ranges of kG and kθ, the value of ∆ satisfies ∆ > 0, which
guarantees that the potential function has a unique mini-
mum at the interruption point. The value of W has been
chosen to be 0.98, although the exact chosen value is not
critical.

Using the propagation described by Eq. (4), the minimum
value is set at the interruption point and the potential value has
a monotone increase, with a minor slope through darker voxels
located around the direction defined by the interrupted branch.
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C36 PA2

C36 PA2

Figure 9: Final 3D models (top) and corresponding ground truths obtained by
a manual segmentation process (bottom).

Once the connection NF1 values are computed, the connec-
tion between the main airway tree and the floating branches is
done with the following steps for each interruption point:

• From the floating branches within the neighborhood box,
select the point with lowest potential.

• From that point follow the negated gradient of the potential
function until the interruption point (that has zero poten-
tial) is reached.

• Dilate the channel of cells and label the result as airways.

As an example Fig. 8 illustrates the process to connect inter-
ruption points with floating branches using the connection NF1
function computed in the neighboring boxes.

6. Evaluation and discussion

6.1. Examples

Two datasets have been used to illustrate our proposal, named
C36 and PA2. The final reconstructed models are shown in
Fig. 9 (top). Dataset C36 has been selected from the testing CT
datasets provided by the Extraction of Airways from CT 2009
(EXACT09) website, that were used to compare different recon-
struction approaches, as reported in [25]. It is known in [25] as
CASE36 and it is a stack of dimension 512 × 512 × 315 with
voxel size 0.6 × 0.6 × 0.7 mm. Dataset PA2 is a stack from
Bellvitge Hospital (Barcelona) with dimension 370×365×239
and with a voxel size of 0.76 × 0.76 × 0.8 mm.

The results of case C36 obtained by our proposal can be com-
pared with those reported in [25] and reproduced in Fig. 10. It

Figure 10: Results of CASE36 reported in EXACT ’09 [25].

can be observed that the proposed approach has been able to re-
construct more bronchi than many others; and from those out-
performing our proposal, some of them are not fully-automatic
procedures. Also, for evaluation purposes, a manual recon-
struction has been carried out for both datasets, C36 and PA2,
to be used as ground truths (Fig. 9 bottom). The percentage (in
volume) of reconstructed bronchi has been of 75% for case C36
and 79% for case PA2, and the percentage in length of 53% and
54% for C36 and PA2, respectively. Fig. 11 shows the skeletons
for C36 used for this later comparison.

The proposed approach has been implemented using
the AMIRA software with the Quantification+ option for
the morphologic processing functions, in combination with
Matlab. The computation times depend on the stack di-
mension, being the mean time around one hour on a
standard computer. The most time-consuming stage is
stage 2 and therefore it has been implemented using multi-
core tools for parallelization. The software is available at
https://www.ioc.upc.edu/personal/jan.rosell/software.

6.2. Conclusions
The reconstruction of a 3D model of the tracheobronchial

tree from the CT scans is a basic step for virtual bronchoscopy
systems. The difficulty in the segmentation of bronchi (black
regions in CT images) is due to the fact that airway walls do
not appear clear enough because of partial volume effects and
noise. In order to cope with this problem and try to reconstruct
as much as possible the complete tracheobronchial tree includ-
ing small bronchi, the paper has presented a proposal with the
following main features:

1. Detects the trachea and the main bronchi using a simple
and robust method. The trachea and the main bronchi are
segmented using a region growing procedure with adaptive
thresholds. It is a basic and not critical stage that aims to
reduce computational time in the next stages of the whole
process.
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Figure 11: Skeletons of the ground truth (left) and of the reconstructed model
(right) for the C36 case, used to compare the percentage (in length) of recon-
structed bronchi.

2. Focuses on bronchi wall detection in order to correctly
segment thinner bronchi. Any other potential airway re-
gion is detected by a simple segmentation process com-
puted on an image where potential bronchi walls have been
previously detected and enhanced. The procedure to de-
tect bronchi walls is done using local gray-level pixel in-
formation and a method to detect and repair possible bro-
ken walls. The procedure is computationally expensive
(although the implementation can be easily parallelized)
but directly focuses on the problem of the partial volume
effects and noise that make the airway walls to appear not
clear enough, thus making it difficult to segment the air-
way regions.

3. Possibility to connect any isolated bronchi to the main tree.
A method to connect isolated segmented regions to the
main tree is provided as a last stage, based on path plan-
ning techniques. The method can take simultaneously into
account in a simple and robust manner the directionality
of the branches and the grayness of the connection.

In summary, the whole proposal is a conceptually simple
method that does not rely on anatomical knowledge of the air-
way tree and that has few parameters easily set to correctly
work with many different CT scans.

Current work is centered in improving the implementation
to reduce the computational cost and also in including an auto-
matic filtering procedure previous to the second stage in order
to enhance its results.
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