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Abstract

This paper deals with the problem of finding the optimum feeding sequence in manufacturing cells with machines fed by robots.
The particular real case of a cell with four parallel identical machines working alternately on two pallets each one, fed by one robot
and with random assistance req uirements, is introduced and analyzed. The cell has been modelled and simulation results for
different feeding sequences are presented. A general discriminant function to select the best feeding sequence between a fixed and a
variable seq uence was determined using simulation results for different working and loading times and pattern recognition

techniques.
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1. Introduction

The paper deals with the problem of finding the
optimum feeding sequence in manufacturing cells with
machines fed by robots. In particular, the work was
developed for a real cell that produces parts for the car
manufacturing industry at the plant of Metaldyne
International Spain SL (formerly R.J. Simpson Inter-
national SL) located in Gava, close to Barcelona
(Spain), with the aim of optimizing its production. The
cell, described in detail below, has one robot that feeds
four identical machines that work alternately on two
pallets and have random assistance requirements.

Each machine in the cell has some unproductive time
when it is waiting for the robot to load the parts on it.
This unproductive time depends on the machine work-
ing time on each pallet and on the sequence that the
robot follows to feed the machines. Differences in the
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unproductive time can arrive up to two orders of
magnitude for different feeding sequences; for instance,
in a particular real case, the unproductive times of the
machines for two different feeding strategies were
0.045% and 5.72%, respectively.

The working times of the machines on each pallet as
well as the loading time of the parts in the machines
depend on the type of part to be processed. Then, it is
necessary to determine: ““In which way should the robot
feed the machines in order to optimize the productivity
of the cell for a given part?” The objective of this work
was the search of a function that, given the values of the
variable times in the cell, returns the best robot loading
sequence.

The determination of optimal feeding sequences for
different types of cell under various conditions has been
extensively studied, but the authors are not aware of any
published general solution for the particular features of
this cell. Most of the previous work in the field deal with
the flowshop scheduling problem trying to determine
exact solutions for deterministic problems. In the
literature several variations of the feeding sequence
and scheduling problems were addressed, considering
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for instance: (a) same/different types of parts; (b)
existence/non-existence of storage buffers with a pre-
determined capacity; (c) fixed/variable working times of
the machines on each type of part; (d) robots (or feeding
elements) with one/several grippers; (¢) machines have
to execute a fixed sequence of operations (even on
different parts) or can perform any work at any time; (f)
loading and unloading times dependant/non-dependant
on the type of part; (g) travelling time of the robot
dependant/non-dependant on the robot load; (h) tran-
sitory conditions are considered/not-considered (i.e. the
solution is dependant/non-dependant on the initial
conditions); (i) some type of machine assistance
(normally deterministic assistance) is needed/not-
needed; (j) existence/non-existence of parallel machines;
and, of course, (k) different number of machines and
robots working in the cell.

Representative work in this area is as follows. Kise et
al. [1] dealt with the problem of optimizing the move-
ments of an Automated Guided Vehicle (AGV) that
serves two machines without buffer storage, and
provided algorithms for the minimization of the
makespan for n parts; King et al. [2] dealt also with a
two machine problem but considering unlimited buffers
for the queue of each machine in a robotized cell and
using a branch and bound approach. Crama and van de
Klundert [3] considered the flowshop problem with one
robot and parts of one type to demonstrate that the
shortest cyclic scheduled for the robot can be solved in
polynomial time in the number of machines. After-
wards, they proved that the sequence of activities whose
execution produces exactly one part has optimal
production rates for the case of three machine flowshop
with one robot [4]. More recently, Crama et al. [5]
presented a good survey of the specific problems and
existing solution approaches to the called robotic
flowshop scheduling problems. Hall et al. [6] also
addressed the problem of bufferless robotized cells for
identical parts, introducing a classification schema and
dealing with cells with two and three machines; Kamoun
et al. [7] dealt with the same problem for a three machine
cell, and proposed a heuristic to find a solution that
minimizes the average steady-state cycle time for the
repetitive production of Minimal Part Sets (MPS). Sethi
et al. [8] dealt with the problem of scheduling robot
movements in dual-gripper robotic cells, they considered
a single part problem without buffers between the
machines and included a comparison of the dual and
single gripper case for a cell with n machines. The
problem of processing times dependant on the task state
(i.e. dependant on the adopted solution instead being
constant) was addressed by Wagneur and Sriskandar-
ajah [9]. Although all these papers cover a wide range of
manufacturing systems, none of them can be tailored to
our particular problem due to the random assistance
requirements.

When the presence of stochastic variations or the
complexity of the manufacturing system preclude the
existence of an analytical solution, discrete-event simu-
lation has become an accepted successful tool for the
performance improvement of manufacturing systems
[10]. For instance, William and Narayanaswamy [11]
studied the correct mix and sequencing of row materials
and the reduction of material-handling costs in an AGV
operated system, Duwayri et al. [I2] reported a
simulation study to evaluate the performance of
different heuristics for scheduling setup changes in a
semiconductor manufacturing system, and Korhonen et
al. [13] studied the effect of queuing rules, buffer policies
and lot sizes on custom service and cost efficiency of a
printed circuit wiring board manufacturing. There are
several software tools for the modelling and simulation
of discrete-event systems like, for instance, Quest,
Automod or Arena. In this work we use the Arena
product family [14], a commercial tool that offers a
comprehensive modelling capability, application-fo-
cused modelling templates and the ability to be
integrated with databases or spreadsheets.

The analysis of the simulation results is complex.
Metamodels or factorial designs are used when compar-
ing a set of alternative models. Pattern recognition
techniques were also used to classify simulation results
and find a way to select the best alternative as a function
of the system parameters in a wide variety of problems.
Good bibliography on the use of pattern recognition,
including the principles of the theory used in this work,
was provided by Meisel [15], Fukunaga [16], Tou and
Gonzalez [17], Young and Calvert [18], and more
recently by Schalkoff [19]. Other approaches, like neural
networks, were given by Bishop [20], and their applica-
tion to jobshop scheduling problems was treated by
Alifantis and Robinson [21].

As previous works by the authors, Suarez and Rosell
[22] and Suarez et al. [23], respectively presented a first
analysis of the cell considered in this work and
introduced the application of pattern recognition
techniques to look for simple solutions.

2. Description of the cell

Fig. 1 shows the layout of the manufacturing cell. The
cell is composed of four machines m;, i=1,...,4,in a
row, all of them of the same type. Each machine
operates alternatively over two different pallets, A and
B, whose positions are interchanged by a pallet shuttle
in a time ¢,. The robot loads a part into the pallet in the
outer position of the shuttle, either type A or type B,
while the machine is working on the pallet in the inner
position.

Each part to be manufactured must first be loaded
into pallet A of any machine, where a set of operations
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Fig. 1. Layout of the manufacturing cell.

leaves it in a medium-processed state. Then, the part
must be removed from that pallet and loaded into pallet
B of any machine (it can be the same machine), where
another set of operations leaves it in the final state
(unprocessed and medium-processed parts are called
type A and type B parts since they always have to be
loaded into pallets A and B, respectively). It is necessary
to remove the parts from pallets A of the machines and
then reload them in pallets B because the parts are
positioned in a different orientation in each pallet so
that all the tools of the machines can work on the proper
side of the parts. Pallets A and B have different
sets of bridles in order to fix the parts in the required
positions.

The parts are loaded into the pallets and unloaded
from them by a 6 d.o.f. robot that uses a rail to move
from one machine to another, requiring times ¢,1, ¢, or
t,3 depending on the distance between the machines.
During regular activity, any load operation implies a
previous unload operation, therefore the times #, and #
considered for loading pallets A and B include the
corresponding unload action. Once a part has been
loaded into a pallet, a set of bridles must be closed to fix
the part (requiring times 7., and ¢.) before allowing the
shuttle rotation to interchange the pallets when the work
on the current inner pallet is done. After the turning of
the pallet shuttle, the robot cannot recover the part from
the outer pallet until the bridles are opened (requiring
times 7., and ,p).

There is a storage line where the robot puts the parts
unloaded from the machines and recovers them when
necessary. Completely unprocessed parts are automati-
cally supplied to this storage line, and therefore the
robot always has direct access to either unprocessed
parts as well as to medium-processed parts. The
availability of parts is not a constraint in the system.

Each machine uses about 25 different tools for the
operations on both pallets. These have to be replaced (or
adjusted) after a number of operations. Since the life-
span of each tool is different, the result is that the
machine needs assistance from a human operator after a
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Fig. 2. Example of a machine cycle distinguishing between inner and
outer pallet.

period of time ¢, that randomly varies within a given
range. In this situation the machine stops working until
a human operator replaces/adjusts the tools in need of
attention and puts it on-line again. This is equivalent to
consider that between intervals of accumulated working
time 7, the machine has a longer working cycle of
duration fy, + 1ty Or tw,+ty, f, being a fixed
assistance time that in normal activity allows the human
operator to replace the tools. During the next cycle on
the same pallet, after assistance for tool replacement, the
operator has to check the performance of machine with
the new tools, and this produces a checking cycle that
again lasts more than the regular working cycle, having
a duration ty, + f.2 Or twp + a2, Where £, 1s also a fixed
time. Only one operator is available for this purpose,
thus, if one machine requests assistance while some
other is already being assisted it will wait off-line for the
operator assistance.

In the real cell, actual fixed times are: ¢, = 6.5”, t,, =
10,257, t,3 = 147, teq = 28", tep, = 307, toa = 127, top =
127, t, = 14", ty = 120", t, =60". t, varies with a
uniform distribution in the range 30'<#,<150". The
times that may vary from one product to another are:
the working times, 200" <fy,<260” and 140" <ty
<220”, and the loading times that in some cases, for
simple parts, can be reduced up to a 25% from the
nominal values #;, = 47" and f, = 55”. Fig. 2 shows an
example of a machine working cycle.

3. Feeding strategies analysis

Only fixed sequences that include all the machines
only once were considered, otherwise some machines
would double the production of some others producing
undesired effects like, for instance, different mainte-
nance routines. Only variable strategies that require
binary causal signals (i.e. binary signals available at the
moment of the decision) were considered. With these
constraints, the following strategies were analyzed
following the directions of the personnel responsible
for the cell.

Fixed machine and fixed pallet (FMFP). The machine
sequence is mj—my—ms—my4 and the robot feeds first



pallets A of all the machines and then, in the next
passing, all pallets B. A machine is skipped if it is being
assisted by the operator.

Fixed machine and free pallet (FM-I). The machine
sequence is m—my—msz—my and the robot feeds the pallet,
either A or B, that each machine needs at the loading
time. A machine is skipped if it is being assisted by the
operator.

Fixed machine and free pallet (FM-II). The machine
sequence is mj—mp,—ms—my4 and the robot feeds the
pallet, either A or B, that each machine needs at the
loading time. A machine is skipped if it is not ready
at the time of its turn in the sequence, either due to
the operator assistance or just because it is still working
on another part and the outer pallet has already been
fed.

First in first out (FIFO). Each time a machine has
finished the work on a part, the pallet shuttle has turned,
and the bridles have been opened, the machine is added
to a queue. The robot feeds always the first machine in
that queue.

A cell simulator was implemented using Arena 3.51
from Rockwell Software Inc. The output data of the cell
simulator is downloaded to a Microsoft Excel work-
sheet, where an output statistical analysis is automati-
cally performed. On the run command, the simulator
reads an input file with a set of pairs of working times
twa and fy, and performs a simulation of the cell
working full day during a month. Ten replications for
each pair of working times are performed in order to
guarantee a desired precision in the statistical
results: 95% confidence interval for the given least
significant digit of each mean value (shown in percen-
tage of the absolute time). The unproductive times of the
machines for each strategy were initially computed for
working times fy, = 251" and fy, = 204”. The results
were:

Strategy Waiting for  Waiting for  Operator
robot operator assistance
FMEFEP (%) 5.72 0.57 5.53
FM-I (%) 0.91 0.60 5.64
FM-II (%)  0.17 0.55 5.66
FIFO (%) 0.045 0.56 5.66

It can be seen that the time that the machines wait for
the robot is highly dependent on the feeding strategy,
while the time that the machines wait for the operator
and the time of the operator assistance are independent
of the feeding strategy (nevertheless, there is a small
correlation because if a strategy makes the machines to
wait a lot for the robot the machine tools last for more
time and the average of assistance by the operator is
slightly smaller). Running the same simulations for
different machine working times, the following time

percentages of the waiting time for the robot were
obtained:

Strategy  fwa = 251, fya = 239, fya = 240, ty, = 210,
tap = 204 fyp = 207 typ = 180 fyy = 150
FMEP (%) 5.72 5.72 5.98 6.43
FM-I (%) 0.91 0.86 0.91 2.11
FM-II (%) 0.17 0.20 1.45 12.16
FIFO (%) 0.045 0.067 1.93 13.37

These results show that the best strategy varies with the
working times. The machine waste time while waiting
for the robot of the less flexible strategy (FMFP) has the
smallest influence of the machine working times. At the
other extreme, the most flexible strategy (FIFO) varies a
lot for different machine working times, going from two
orders of magnitude better than FMFP to a worse
performance. Thus, the selection of the best strategy for
a given pair of working times is a relevant problem.

4. Cell analysis

Let us define:

Machine Activity (M A): the time that a machine needs,
after being fed by the robot, to be ready for a new load.

Robot Activity (RA): the time that the robot needs,
after feeding a machine m;, to feed all the other available
machines (i.e. those that are not under assistance) and
be ready to feed again the machine m;.

Robot Moves (RM): the time due to the robot moves
(displacements) from a machine to another during RA.

Robot Loads (RL): the time dedicated to unload and
load machines during RA.

In order to avoid waste time of the machines during
production, the activities must satisfy

MA>RA = RM + RL, (1)

i.e. after feeding a machine m; the robot must be able to
visit all the other machines, feed them and return to m;
before m; is ready for a new load. In order to optimize
productivity, the left-hand side of inequality (1) should
be minimized (reduce MA) up to the limit imposed by
RA. If MA>RA then the robot has to wait for a
machine to become ready to be fed (typically the robot
waits in front of the next machine to be loaded in a fixed
sequence, or in front of the last loaded machine in a
variable sequence). Let us briefly review the conditions
for each activity.

4.1. Fixed sequences

Machine Activity (MA). MA is the maximum time
that the machine gives to the robot to reload it before it
stops working and introduces waste time, and after



Fig. 3. Possible types of machine feeding sequences: (a) n;—mnp—ms—my
(continuous line); (b) m;—m3—my—m, (dotted line); (c) m—mz—my—my
(dashed line).

loading a part type A or B it is MA=MA,=t.,+t,+
fwa— tep — iy OF MA = MAy, = tep + 1 + typ — lea — la,
respectively. These values are considered as the constraint
in inequality (1). The example in Fig. 2 shows a machine
cycle with the maximum MA that ensures no wasted time.
Robot Moves (RM) in Robot Activity (RA). RM
depends on the sequence the robot follows to feed the
machines. Since the robot must feed all the machines
before feeding twice one of them, there are only three
different possible types of sequences (Fig. 3):
(a) Sequence m;—my—mis—my: then RM = RM | =3t,1+1,3.
(b) Sequence m|—m3—my—my: then RM = RM, = 2t,] +
2t9.
(c) Sequence mj—ms—my—my: then RM = RMs =t +
2tr2 + 3.

Since t,3 =1, > 1, it is evident that RM35 is always worse
than RM| and RM so sequence (c) produces the worst
RM. On the other hand, the convenience of RM; or
RM, depends on the ratios between ¢,1, ¢, and ¢,3. For
the typical trapezoidal velocity profile of a robot move
(constant acceleration period, maximum velocity period,
and constant deceleration period) ¢, + f,3<2t, then
RM | < RM,, and therefore sequence (a) is preferred to
sequence (b). As a conclusion, sequence (a) produces the
shortest RM. Obviously, if a machine is being assisted,
and therefore skipped by the robot, RM is smaller than
in a regular situation.

Robot Loads (RL) in Robot Activity (RA). RL depends on
the sequence of pallet types loaded by the robot in each
machine (with independence of the position of the machine).
Since there are two types of parts (A and B) and four
machines, there are, in principle, 16 different combinations;
nevertheless, since each machine has to process different
type of parts in two consecutive cycles, the possible different
sequences are reduced to eight, namely (subscripts p, ¢, r
and s take values from 1 to 4 with p#g#r+#s):

Type of the inner pallet in machine:

m, my m my m, my m, my
@ A A A A B B B B
®® A A A B B B B A
@ A A B A B B A B
@ A A B B B B A A

189

@ A B A A B A B B
® A B A B B A B A
@@ A B B A B A A B
) A B B B B A A A

During regular activity the robot has to feed three
machines before repeating one of them, and the
following situations are possible:

e In all sequences (a)-(h), at some point the robot has
to feed consecutively one part A and two parts B or
two parts A and one part B, RL being, respectively,
RL =RL| =t +2t), or RL = RL, =2t + tip.

e In the sequences (a), (b), (d) and (h), at some point the
robot has to feed consecutively three parts A and
three parts B, RL being, respectively, RL = RL; =
3tia or RL = RL4 = 31y,

Thus, if 1, = #;, any sequence from (a) to (h) implies the
same RL, but if 1, #f, then sequences (a), (b), (d) and
(h) impose two additional constraints, being one of them
the worst case constraint (i.e. highest value of RL), RL;
if t1, > t), and RL,4 otherwise. As a conclusion, any of the
sequences (c), (e), (f) or (g) is preferred.

4.2. Variable sequences

Variable sequences, like FIFO, are determined by a
heuristic that, based on the available information at the
time of the decision making, chooses the next machine
to be served by the robot, and therefore the analysis for
fixed sequences presented above is no longer applicable.
These heuristic-based strategies allows the robot to
“adapt” the sequence of machines when the regular
current activity is altered by any reason (like the
machine assistance), giving more flexibility and increas-
ing the capability of dealing with random perturbations.

On the other hand, as it was shown in the
experimental results in Section 3, the performance of
FIFO (more flexible) strategy has large variations
depending on the machine working times. This is
because the FIFO strategy may increase the robot
travelling time by carrying the robot from one machine
to another with the possibility of passing in front of a
machine ready to be loaded without loading it. This
effect is more significant when the machines are fast
enough compared with the robot activity RA.

In order to model the constraints of the FIFO
strategy, consider that at time X a machine m* becomes
ready for a new load and at that moment it is included in
the queue; also consider margin, = ty, — tob — tib — teb
and margin, = tyb — toa — ta — tea. Then, in order to
avoid machine m* to wait for the robot it has to be fed at
time t{‘ satisfying

margin
= zk+/1’f{ gt } with 0< /¥ <1, )
marginy,



where any of the values between braces may be
considered (in this case it depends on the pallet
concerned). The same can be stated for the next machine
in the queue, m**!, if it is ready for a new load at /! it
has to be loaded at

margin,

z{‘“:r"“uk“{ } with 0< <1, (3)

marginy,
Besides, z{‘ and t{‘“ are related by the time ¢,,, that the
robot needs, after arriving to m*, to load it and go to
e,

A
k+1 < Gk k Ib
tl >t1 + tim = t] + + Lo ¢ (4)

la
43
Considering **! = ¢ + At and substituting (2) and (3)
in (4) the following inequality results

. k .
Ar g margin, S A margin, + ty,
margin, /lkmarginb + la
1
+ Lo ¢ (5)

tr3
Since the machine #**! can wait up to the limit imposed
by ! =1 before having to wait for the robot, the
worst case is produced when X =1 (machine m¥ also
loaded in the limit time), and Az — 0 (the two machines
enter in the queue almost at the same time). In this case
the existence of unproductive time in #**! depends on
the distance between m* and m**! and on the relation
between margin, and marginy, if the pallets to be loaded
are of different type; but it is clear that if in some
situations the inequality is satisfied, in some others, with
the same probability, this would not be the case.

4.3. Effect of the assistance to the machines

When one of the machines requires assistance it is
automatically disconnected from the manufacturing line
until a human operator assists it, changes the relevant
tools, and puts it on-line again. When a machine is in an
assistance state the Robot Activity R4 is reduced since
both RM and RL are reduced, and therefore inequality
(1) is more easily satisfied. Nevertheless, when the
machine is put on-line again it may have to wait for the
robot to reach it, producing an undesired waste time
that is different for fixed or variable feeding sequences.

For a FM sequence it can happen that the machine
gets into the line immediately after its nominal turn in
the sequence, then it will have an unproductive time
until the robot reaches it again. It may be even worst
with a FMFP sequence when a machine gets into the

line with the pallet that does not correspond to the
sequence; in this case the robot will not stop at
the machine in the first passing in front of it but instead
the robot will load it in the next cycle, although the
machine is ready to work immediately after re-entering
the line. For a FIFO sequence this effect is less relevant
because, if necessary, the robot can load the machine
that has just entered into the line if no other one is in the
queue, although this strategy cannot avoid some waste
time, as it was shown in Section 4.2.

The machines request assistance randomly within a
given period of time, and although experimental results
and a simple analysis show that fixed sequences are
more sensible to the random effect of the assistance than
variable sequences, the exact influence on the different
loading strategies requires an statistical analysis as a
complement to the previous one. A complete model for
such analysis has not yet been developed, and therefore
the determination of a precise criterion for the feeding
strategy selection is not straightforward.

5. Feeding strategy selection

Since there is no general theoretical solution for the
mentioned type of cell under the real condition of
random assistance requirements by the machines, a two-
step procedure was followed. First, the simulator of the
cell was used to analyze the machine waste time for
different sequences with different working times. Sec-
ond, pattern recognition techniques were used to
identify the domain in which a given feeding sequence
is better than another.

One fixed (FM-I) and one variable (FIFO) feeding
strategies were considered from those described in
Section 3. The selection of the FM-I strategy as
representative of the fixed sequences is because the
strategy FMFP is always worse than the FM-I, and
when the FM-II is better that FM-I it always happens
that the FIFO is better than FM-II (see experimental
results in Section 3); therefore, FMFP and FM-II were
ruled out.

The work was done according to the following steps:

(1) Obtention of a set of labelled samples from
simulations of the FM-I and FIFO sequences with
different working times #y, and tup. A labelled sample is
obtained by associating to a pair [fwa, twp] the feeding
sequence with lower unproductive time (the machine
unproductive time is computed as a percentage of the
total absolute time).

(2) Computation of a linear discriminant function
using the set of labelled samples obtained from the
previous step. The function indicates the best strategy
for any given working times #y, and #yp.

Details about each step are given in the following
subsections. Once the linear discriminant function is



determined, the work to be done by the cell operators in
order to choose the best feeding strategy for a new set of
working times on pallets A and B is just the evaluation
of a simple linear function (the discriminant), and the
sign of the numerical result will indicate the best feeding
strategy.

5.1. Obtention of labelled samples

A number of simulations were done for the sequences
FM-I and FIFO for several values of ¢, and t, within
their usual ranges (200" < tya < 260" and
140" < 14, <220”). Considering the nominal loading
times, the statistical results are shown in Tables 1 and 2.

The average unproductive times obtained with both
strategies were interpolated in order to represent them as
two surfaces (Fig. 4). The three-dimensional graphical
representation shows the relation between the surfaces
as well as an approximation of their intersection (white
line in the figure), whose projection on the base plane
determines the discriminant between the two regions
where one strategy is better than the other.

5.2. Linear discriminant
The Linear Discriminant Function (LDF) is a linear

function such that LDF =0 divides the two-dimen-
sional workspace defined by (fya tw)' into two regions

Table 1

191

(LDF >0 and LDF <0, respectively) such that in each of
these regions one of the feeding strategies is better than
the other [15]. The LDF is computed using the set of
labelled samples obtained by simulations of the cell. The
lost function to be minimized for the automatic
determination of the LDF is proportional to the
distance from the discriminant to the labelled samples
that are misclassified. A dead zone around the dis-
criminant is considered in order to emphasize the
influence of samples close to the linear discriminant.
Fig. 5 illustrates these concepts.

The linear discriminant is given by LDF(tya, twb) =
Yalwa + Vplwb + Yo = 0 where y,, 7y, and yp., are the
parameters that define the linear discriminant (straight
line) in the two-dimensional space of the working times
(lwa Zwb)T'

Let us consider the following notation:

Tw = (twa, two, 1)T: vector representing a sample of
working times fy, and fyp.

Ty a labelled sample, i.e. a vector (Zya, twb, 1)T for
which the best feeding strategy is known.

Ty  a labelled sample for which the best feeding
strategy is the FIFO.

T’W7: a labelled sample for which the best feeding
strategy is the FM-I.

U{Tyw): unproductive time for the working times #y,
and typ, of a sample 7'y using FIFO strategy.

Percentage of absolute time that the machines were unproductive because they were waiting for the robot, for a fixed machine sequence (FM-I)

Working time on pallet B

FM 140 150 160 170 180 190 200 210 220
Working time 200 16.35 12.32 8.36 4.73 1.94
on pallet A 210 12.32 8.33 1.88
220 12.34 3.24 0.75
230 6.53 3.44 0.95
240 8.51 3.65 2.25 111 0.79 0.78 0.80
250 5.58 1.43 0.89 0.829 0.83
260 5.87 3.01 1.79 1.08 0.88 0.88

Table 2

Percentage of absolute time that the machines were unproductive because they were waiting for the robot, for a variable sequence (FIFO)

Working time on pallet B

FIFO 140 150 160 170 180 190 200 210 220
Working times 200 17.48 13.47 9.25 5.29 1.72
on pallet A 210 13.37 9.32 1.71

220 13.35 3.42 0.15

230 7.43 3.43 0.577

240 9.39 3.59 1.93 0.71 0.18 0.048 0.02

250 5.60 0.87 0.26 0.07 0.02

260 5.73 2.38 1.08 0.36 0.05 0.01
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Fig. 4. Three-dimensional representation of the unproductive time as a
function of #y, and typ.

O sampleof class FIFO (Tyy)
o sampleof class FM-I (Tyy)

LDF =d

LDF =0

LDF = —d

> tye

Fig. 5. Illustration of the LDF, the dead zone of width 2d and the
distances used in the lost function for the misclassified samples.

Ui(Tw): unproductive time for the working times #,
and t,p of a sample Ty using FM-I strategy.

Then, the LDF can be expressed as LDF(Ty) =
I' Ty =0where ' = (ya,yb,yC)T is a vector that defines
de LDF.

By convention, the signs to identify each class of
samples are assigned such that LDF(T",;)>0 and
LDF(T';;) <0.

The dead zone, of width 2d, between the two classes is
defined by the linear functions given by LDF(Tw) =
I Ty =4d.

The lost considered in this work when a given labelled
sample is misclassified is the distance from that sample
to the correct class domain multiplied by the difference
in the unproductive time between both strategies. This
lost is formalized with the following lost function.

The lost function computed when a sample 77, (i.e
with FIFO as best strategy) is classified as FM-I is (see
for instance d; and d; in Fig. 5):

0 if LDF(T',)>d,

[UAThy:) = UTiy)]
[d =TTy

L; (T/Wi) =
if LDF(T,;)<d
(6)
and the lost function computed when a sample T/VW (i.e.
with FM-I as best strategy) is classified as FIFO is (see
for instance d; and d4 in Fig. 5):
0 if LDF(T'y;)< —d,
[UA(Ty;) — UTy)]
[d+1- T/W]

Ly (T/uy) =
if LDF(T'y;)> —d.

()

Then, the total lost function to be minimized in order to
look for the optimum LDF is

R=) Li(Ty)+ ) Li(T). (8)
i 7

The minimization of R was done using MATLAB
Optimization Toolbox [24]. Considering d = 25 (deter-
mined empirically according to the distance between the
samples), the result of the minimization process was a
loss R = 0.017 for the discriminant parameters

Ya 0.27083
r=|y|=102157], ©)
Ve —100

so the optimum LDF is

LDF(ta, twb) = 0.27083tya + 0.21527 1 — 100
=0. (10)

Fig. 6 shows the obtained LDF with the corresponding
samples obtained by simulation.

As a simple example of the use of the discriminant
consider that a given part with working times f, = 222"
and f, = 163" has to be manufactured; computing the
value of LDF for these working times results
LDF(222,163)=0.27083 x 222 4+ 0.21527 x 163 — 100 =
—4.786730 <0, and therefore the best feeding sequence
for this part is FM-I.
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Fig. 6. Labelled samples from simulations and the obtained optimum
LDF (the three parallel lines represent LDF = 0 and LDF = +d).

6. Case of variable loading times

As it was mentioned in Section 2 loading times 7, and
fiy can be reduced for simple parts that allow more
simple robot movements when positioning the part in
the pallet. The reduction in loading times can be up to a
25% of the nominal values t, = 47" and f, = 55”. This
introduces a change in the operation that may alter the
results regarding the best feeding strategy.

In order to minimize the increment of the sample
space dimension, the effect of different loading times ¢,
and #;, was not considered independently. Instead, the
effect of a percentage reduction on both current loading
times was considered, maintaining always the same
range of working times for #y, and fyp.

Then, the problem is now reformulated as the search
for a discriminant function in a three-dimensional
workspace that selects the best feeding sequence
depending on the working times fy, and ty, and on
the percentage, r, of reduction of the loading times from
their nominal values. The linear discriminant function
was obtained in the same way as it was done for a two-
dimensional problem and described in the previous
section, since it is a general procedure and can be
applied to any number of degrees of freedom.

Simulation results for unproductive times with r =
10% and 15% are shown in Fig. 7. The discriminant
functions corresponding to r=10% and 15% are
shown in Fig. 8. Finally, the LDF for the three-
dimensional space defined by ty., twb» and r is the plane
(adjusted with a misclassifying lost of 0.0067) shown in
Fig. 9 and corresponds to

4.1ty + 3.1ty — 10.6r — 1461.5 = 0. (11)

UNPRODUCTIVE MACHINE TIMES

1680

140
@ tuwb FIFO

UNPRODUCTIVE MACHINE TIMES

160

140 150
(b twb

FIFO

Fig. 7. Three-dimensional representation of the unproductive time as a
function of ty, and ty, for (a) r = 10% and (b) r = 15%.

It can be seen that the reduction in the loading times is
favorable to the FIFO strategy; this is due to the
fact that the bottleneck is not the robot activity but
the rigidness of the FM-I strategy, as commented in
Section 4.2.

7. Conclusions

The problem of feeding in an optimal way a
manufacturing cell composed by four parallel machines
was addressed using discrete event simulation and the
theory of linear discriminant functions. The cell is
located in a car-parts manufacturing company and has
some features that make the problem a special case, and
therefore there is no general solution available in the
literature. For some conditions, differences in the
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Fig. 8. Labelled samples from simulations and the obtained two-
dimensional LDF for (a) r = 10% and (b) r = 15%.

unproductive time of the machines can be quite
significative, so choosing the best feeding sequence is
really important. The cell was modelled and a discrete
event simulator of the cell was implemented. Simulation
results for different feeding sequences and machine
working times were then used to determine a linear
discriminant function. This approach, frequently used in
pattern recognition, allows the determination of the best
feeding strategy in a very simple way just by evaluating a
linear function. The cell operator only needs to
introduce the values of the new data (working times in
each pallet and reduction of the loading time) in the
linear discriminant and the resulting sign indicates the
best loading strategy.

The proposed approach is a simple solution to an
open problem without a precise deterministic solution
(new theoretical approaches are still to be developed),
and therefore is a first step in the search of a practical
solution for a real industrial application.

FMI
400 i FIFO
B LDF
300 4
*
200
100 |
0
-100
—200
280
b 200 200
220 o
O FMI
* FIFO
400 — I LDF

Fig. 9. Two views of the labelled samples from simulations and the
obtained three-dimensional LDF.
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