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The use of robots to automate some tasks involving sensors and motion 
planning strategies is not yet widely extended due to the difficulty of their 
programming. Therefore, there is the need of systems that allow the user to 
easily specify a high level description of the task (i.e. what is to be done) and 
that allow to automatically program the robot motions from this description 
(i.e. how will it be done).  
 
Automatic polishing systems require the generation of collision-free 
trajectories and the use of compliant control. Most of the approaches have 
addressed this problem for polishing robots working on fixed parts. Nagata 
and Watanabe [1] propose a joystick controlled teaching system that allows a 
polishing robot with impedance control mode to perform polishing tasks on an 
object with unknown shape. Active force control is also used in Wang and 
Wang [2], that propose an automated finishing system for polishing a free 
form surface using an active force controller mounted on the wrist of an 
industrial robot equipped with a grinding tool. The system includes a path 
planning module to plan zigzag and fractal paths on curved surfaces [3]. The 
planning of collision-free paths is cluttered environments is tackled in 
Takeuchi et al. [4,5], where an automatic programming system is developed 
for a robot equipped with a polishing tool. The system allows the generation 
collision-free paths for the polishing of workpieces with complicated shapes. 
An automatic teaching system is proposed in [6] for a three-axis machining 
centre and a two degrees of freedom robot. The system is driven by a user-
friendly program based on a CAM software to generate 5 d.o.f. NC data. The 
program also includes a graphic simulator and a teaching mode. The system 
is extended in [7] with a monitoring program that allows to operate the 
polishing robot from a remote site. 
 
This paper addresses the problem of the automatic programming of robotic 
polishing tasks from a graphical high-level description of these tasks. We 
consider polishing tasks of small parts, which are held by the robot gripper. 
Compliance is assumed on the polishing station.  
 
The paper presents a formal analysis of the problem and the solution 
proposed, which is decomposed in two parts: the task specification module 
and the task planning module. The task specification module is a graphical 
user interface that allows the user to easily specify the polishing curves over 
a CAD model of the part. The task planning module finds the time-optimum 
sequence of collision-free trajectories to execute the task.  



Overview 

   

 Problem Statement 

 Let us define:   
• Polishing curve: Curve over the surface of a part to be polished 

representing a strip that must be polished continuously. It is described 
by an ordered set of reference frames over the surface of a part to be 
polished. The z-axis of each reference frame is normal to the surface 
and the x-axis points to the origin of the next reference frame.  

• Polishing station: Set of locations over a polishing band which allows 
the same surface finishing. Each location is described by a reference 
frame.  

• Trajectory: Set of ordered robot configurations, a configuration being 
defined by the joint variables. They can be either a polishing trajectory, 
that allows to follow a polishing curve at a given polishing location, or 
a linking trajectory, that allows the robot to connect two polishing 
trajectories through a collision-free path.  

• Polishing motion sequence: The sequence of trajectories which allows 
to follow all the polishing curves of a part in minimum time.  

 
The aim of this project is to automatically synthesize the polishing motion 
sequence from a user-defined graphical description of the polishing curves 
over a CAD model of the part to be polished. To achieve this objective, the 
three following topics must be tackled:  
 

• Task Specification: Determination of the polishing curves over the 
CAD model of the part in a user-friendly way.  

• Optimization: Finding the best feasible sequence of polishing 
trajectories for a given sequence of polishing curves, taking into 
account that different trajectories can be used to follow each of the 
polishing curves. This is due to several reasons like the different 
locations of the selected polishing station, the different solutions of the 
inverse kinematics or the two senses in which many curves can be 
followed.  

• Path planning: Finding collision-free linking trajectories through the 
polishing cell.  

Proposed approach 

  
The proposed system is composed of a task specification module and a task 
planning module.  
 
The task specification module is a graphics user interface that copes with the 
specification problem. The input file is a CAD model of the part to be polished 
represented by a triangular mesh. The output of the specification module is 
an ASCII file including information about the curves and the grasps:  
 



• Each polishing curve is described by the following parameters:  
 

- Sequence of reference frames.  
-  Allowed execution senses.  
- Execution speed.  
- Type of surface finishing.  
- Width of the polishing band.  
- Force specification in the z-direction of each reference frame.  

 
• Set of grasps each one described by a homogeneous transformation 

relating the reference frame of the part to the reference frame at the 
wrist of the robot.  

 
The task planning module copes with the optimization and path planning 
aspects. The input files to this module are:   
 

• The description of the polishing cell given by a VRML file with the 
geometry of a set of convex solids representing the objects in the cell 
(Figure 1). 

 
• Set of polishing stations.  
 
• The description of the polishing curves over the CAD model of the part 

resulting from the specification module.   
 

The output files of the planning module are the following:  
 

• Execution file: A program that allows the execution of the task by the 
robot. The program (in the present case a V+ program for a Stäubli 
RX-90 robot) is a sequence of motions between robot configurations, 
defined as joint-space motions for linking trajectories and as 
cartesian-space motions for polishing trajectories, with force 
references to be used by an active compliant polishing station.  

 
• Simulation file: A VRML file which contains the robot motions for the 

simulation of the task.   

Task specification module 

   
The task planning module was introduced in [8]. The graphics user interface 
built as task specification module is called Polishing Curves Generator 
(PCG). It is intended to be a user-friendly tool to specify the polishing curves 
over a CAD model of the part, able to be used by an operator with few 
computer knowledge. It works under Windows and it is programmed in C 
using the openGL graphics library:  

Main Features 

• Visualization: The model of the part to be polished is represented by 



a triangular mesh specified as an input VRML 1.0 file. The part can be 
visualized as a solid or wired model, and can easily be rotated in any 
direction (Figure 2).  

 
• Specification of the curves parameters: Before entering the points 

of a curve, a dialog box appears in order to select the following 
parameters of the curve (Figure 3):  

o Type of surface finishing: Identifier of the type of surface 
finishing.  

o Velocity: Linear velocity of the part at the contact point; for a 
given pressure, an increase in the velocity results in a 
decrease in material removal.  

o Pressure: Force exerted by the polishing band at the contact 
point.  

o Width: Width of the polishing band.  
The parameters of any existing curve can also be modified from the 
menu.  

 
• Specification of the curves geometry: The selection of the points of 

a curve is done with the mouse over the CAD model of the part. The 
middle points of the triangles of the triangular mesh are represented 
as nodes of a graph. Each arc of the graph is composed of two 
straight segments over the triangles connecting the corresponding 
nodes through the middle point of the border edge. A curve is 
specified as a set of subcurves, which are the segments connecting 
two consecutive points introduced by the user. When the user enters 
the two points of a subcurve, they are included as nodes of the graph 
and the subcurve connecting them is generated using the Dijkstra 
algorithm [9] to search the minimum-distance path. The nodes of the 
solution path are called internal points of the subcurve.  

 
The edit menu allows to add or to delete the final subcurve of any 
curve. Figure 4 shows a curve composed of two subcurves. The 
current subcurve (i.e. the one being just defined by the user) is 
interactively computed as the user drags its end point to the desired 
final position.  

 
• Smoothing of the curves: A smoothing algorithm is applied to each 

subcurve, by moving the points on the edges (Figure 5). Let P  be one 
of these points over a given edge e , and let v

r
 and w

r
 be the unitary 

vectors on the subcurve with origin at P . Then P  is moved along e  in 
the sense specified by the projection of v w+

r r
 on e  an amount 

( ) / 2v w+
r r

. The procedure is iteratively applied until its convergence. 

Figure 6 shows the smoothing of the previous defined polishing curves 
of Figure 4.  

 
• Polishing strip: The strip polished by a given band depends on the 

part material, the specified force and the velocity, and it is limited by 
the width of the band. The strip is visualized over the part as the user 



specifies the geometry of the curve, which allows the definition of the 
minimum number of curves to cover all the part surface, as shown in 
Figure 7. Figure 8 shows the strips polished for two polishing curves 
that are defined to be polished at different pressure.  

An Example 

  
There are different types of pieces that need a polishing process. Among 
them, bath tabs and door knobs are some of the more usually found in 
robotized polishing workshops. Figure 9 shows the polishing curves defined 
over a door knob. There are eleven polishing curves with a total of 825 points 
that totally cover the knob surface. The curves have been defined in less 
than five minutes by a trained user.  

Task planning module 

   
The task planning module was introduced in [10]. Its main characteristics are 
the following. The module synthesizes the robot program in two steps:  
 

• First, collision-free polishing trajectories for each polishing curve are 
obtained. This is done considering the polishing locations of the 
polishing stations that are consistent with the type of surface finishing 
described for each polishing curve, and applying the robot inverse 
kinematics1. The optimization problem is solved for the obtained 
polishing trajectories.  

• Second, the obstacle avoidance is tackled for the linking trajectories.  
 

The submodules to perform these steps are described in the following 
subsections.  

Sequence optimization submodule 

  
The optimization module finds the best feasible sequence of polishing 
trajectories. It initially considers that a linking trajectory is a linear path in joint 
space connecting the last and the first configurations of two consecutive 
polishing trajectories, i.e. it does not take into account possible collisions.  
 
The problem of searching the optimum sequence of trajectories can be 
represented as the problem of searching the path of minimum cost through 
an oriented graph (Figure 10), where:   
 

• Each node represent a feasible trajectory to perform a polishing curve 
(the nodes are grouped in columns representing the same polishing 
curve); and the nodes in  and fn  represent, respectively, the initial and 

the final configurations.  
                                                
1 Collision-free condition is verified, for each trajectory, by checking a sample of the 
its configurations. 



• The arcs represent linking trajectories.   
 

The cost of a trajectory represents the time needed for the execution of the 
corresponding motions. It is computed as follows. Let iθ∆  be the angular 

motion of joint i  for a given linking trajectory, and max
iv  its maximum angular 

velocity. The minimum time to perform the motion of joint i  is max/ iii vt θ∆= . 
Then, the cost C  of a trajectory is: 
  

 ,i i jC t t t i j= ≥ ∀  

 
If a linking trajectory involves a regrasping operation its cost is set to a very 
high value.  
 
The cost of the arcs of the graph is the sum of the cost of the linking 
trajectory it represents and the cost of the previous polishing trajectory (i.e. 
the one represented by the initial node of the arc).  
 
The topology of the graph allows the use of the Bellmann algorithm [11] in 
order to find the sequence of trajectories with minimum cost.  
 
Due to the presence of an obstacle, the path planning module could modify a 
linking trajectory with a considerable increase in the cost. In this case, all the 
linking trajectories connecting the same two polishing curves should be, 
probably, also modified. The costs of the modified linking trajectories replace 
in the graph to the initial ones, and the optimization procedure is executed 
again.  

Path planning submodule 

The path planning module uses a collision map based on an approximate cell 
decomposition of the Configuration Space [12] corresponding to the three 
first links of the robot. It is built for every polishing cell as shown in the 
following algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Collision-map( )   

1. Partition the Configuration Space into a regular grid.  
2. Use I-COLLIDE [13] to verify if for the centre of each cell there is 

any intersection between the objects of the environment and the 
robot, considering the three last joints and the grasped part 
included in a sphere.  [] Mark the cells as free cells if there is no 
intersection, and as collision cells otherwise.  

3. Expand the collision space by marking as collision cells those 
that are neighbour to any collision cell found in the previous 
step.  

4. Built bigger parallelepiped cells by joining adjacent free cells 
when possible.  

5. Identify free subspaces.  
6. Built a graph for each subspace, the nodes being the cells of the 

partition and the arcs connecting adjacent cells.  
7. Find the paths between any two nodes of the graph (using a 

modified version of the Fulkerson algorithm [11])   
END    

 
As an example Figure 11 shows a partition of the Configuration Space with 
three subspaces. It has been obtained from an initial grid of 64,000 cells 
(Section 4.3).  
 
The path planning module is devoted to find collision-free paths between the 
contact configurations corresponding to the end and to the beginning of two 
consecutive polishing trajectories.  
 
Let ic  and fc  be two of such configurations. Let 'ic  and ' fc  be two 

configurations located, respectively, at a given distance d  from ic  and fc  in 

the direction of the z-axis of the reference frame of the corresponding 
polishing location. The distance d   is defined by the user.  
 
The path p  connecting ic  and fc  is decomposed into:  

ip : rectilinear path in cartesian space connecting ic  with 'ic .  

sp : a path connecting 'ic  with ' fc  in joint space. 

fp : a rectilinear path in cartesian space connecting  ' fc  with fc .   

These paths will be computed by the path planning algorithm, which uses the 
following three tools: 
 
 
 
 
 
 
 
 
 

 



1. Validation tool: Given a rectilinear path s  in joint space, it verifies if s  is 
collision-free.  

 
Validate( s )   

Discretize s  into a finite set of configurations. 
each segment of p  into a finite set of configurations  
FOR  each configuration: 

Use I-COLLIDE [13] to detect any collision between the robot 
(including the grasped part) and the objects of the environment. 
IF a collision is detected RETURN non-valid  

 END FOR 
RETURN valid 

END    
 
2. Smoothing tool: Given a trajectory p composed of a set of linear 

segments, it finds a collision-free smoother trajectory 'p . 
  

Smooth( p )   
1. Discretize each segment of p  into a finite set of configurations  
2. Generate a graph with these configurations as nodes, and with 

the rectilinear paths connecting any two nodes as arcs  
3. Apply the Dijkstra algorithm [?] to find the shortest path 'p  

connecting the initial and the final nodes  
4. Validate( 'p )  
5. IF 'p is not valid, eliminate the segments of 'p  that are not valid 

and GOTO 3  
6. ELSE RETURN  'p  

END    
 
 
3. Search tool: Given two configurations 'ic  and ' fc  finds a collision-free 

path between them. Since the collision map is built in a very conservative 
way, the two configurations 'ic and ' fc  will probably not belong to any 

free cell. However, it is assumed that a free path exists connecting them 
to a free subspace, since the environment in a polishing cell will not be 
very cluttered. 

 
      Search( 'ic , ' fc )   

1. Find two configurations ''ic , '' fc  a free subspace, which are, 

respectively, the closest configurations to  'ic  and ' fc . 

2. 'p =  trajectory between ''ic  and '' fc  obtained from the collision 

map  
3. '   ' ''   '' 'i i f fp p c c c c= ∪ ∪  
4. Smooth( p )  
5. RETURN p  

 END    

 

 

 



 
 
 
As an example Figure 12 shows the path p searched in the collision map and 
the corresponding smoothed path 'p . Finally, the path planning algorithm is 
as follows:  
 
       Path-Planning( ic , fc , d )   

Find 'ic  and ' fc  as the configurations located at a distance d from ic  

and fc , respectively, in the direction of the z-axis of the reference 

frame of the corresponding polishing location.  
ip : rectilinear path in Cartesian Space between ic  and 'ic  

sp : rectilinear path in Joint Space between 'ic  and ' fc . 

fp : rectilinear path in Cartesian Space between ' fc  and fc . 

Validate( sp )  
IF sp  is not valid THEN sp = Search( 'ic , ' fc )  

       RETURN ( i s fp p p∪ ∪ )    
   END    

 

A Case Study 

This section presents the following example:   
• The task is performed by a RX-90 Stäubli robot.  
• The part to be polished is a semisphere.  
• The polishing cell has two polishing stations, each one with only one 

polishing location, and one obstacle (Figure 1). 
• Four polishing curves have been described over the part (Figure 13):  

o The first three, described by 10 reference frames, are to be 
performed at polishing station number 1.  

o The last one is a continuous curve described by 20 reference 
frames; it is to be performed at polishing station number 2.  

o All of them can be executed in either sense.   
• Joint 6 has a finite range.  
• The part can only be grasped in a way.   
 

As a result of these initial conditions, and taking into account the inverse 
kinematics, each polishing curve can be performed by 12, 8, 8 and 114 
polishing trajectories, respectively.  
The program runs in a Silicon Graphics workstation (175 MHz R10000 
Indigo2). The two phases of the program synthesis are the following.  
 
Otimization phase:  
The graph is generated in 4.3 seconds and the optimum polishing trajectory 
sequence is found in 0.01 seconds.  
 
 

 



 
Path planning phase:  
 
The collision map is generated with:  

• An initial partition of 64,000 cells:   
o Joint 1θ : Range divided in 40 intervals (each 8º over a range of 

320º).  
o Joint 2θ : Range divided in 40 intervals (each 6.88º over a 

range of 275º).  
o Joint 3θ : Range divided in 40 intervals (each 7.12º  over a 

range of 285º).  
•  A radius of the sphere covering the three last joints and the grasped 

part equal to 400 mm.   
 

The collision map is obtained in 43.89 seconds distributed as follows:   
• The collision detection to determine the free cells is obtained in 40.10 

seconds. 
•  The connectivity test to generate the subspaces and the grouping 

algorithm to form bigger free cells is performed in 3.33 seconds. Three 
subspaces are obtained, composed of 228, 83 and 55 cells 
respectively.  

• The modified Fulkerson algorithm to find the paths connecting any two 
cells is performed in 0.44, 0.01 and 0.01, respectively, for each 
subspace.   

 
The modification of the Fulkerson algorithms allows to deal with rather big 
graphs, making the grouping algorithm not critical.  
 
The solution path is obtained in 65 seconds by:  

• Fixing the distance d  to 20 mm.  
• Using the collision map to find sp , which is found to be composed of 

20 configurations. 
• Smoothing with a discretization of 100 points per arc.  
• Validating the arcs with a step less than 3 degrees.   
 

The input and output files of this example, including the simulation, are 
shown in http://www.ioc.upc.es/ rosell/polishing  

Conclusions 

   
This paper presents a graphical task-level robot programming tool for 
polishing parts held by the robot gripper. The proposed approach allows a 
user-friendly manner to specify the polishing curves over a CAD model of the 
part. The user also specifies the width of the abrasive polishing bands to be 
used and the pressure exerted. The graphical user interface aids the user in 
verifying that the whole surface is to be correctly polished. Once the task 
specification is done, a task planning module provides the algorithms to 
guarantee the time-optimum sequence of robot trajectories to perform the 



polishing of the curves over the part, avoiding collisions with the obstacles of 
the cell. The proposed approach can be easily extended to other similar 
tasks like cutting or material dispensing.   
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Figure 1. Polishing cell 
 
 
 
 
 
 

 
Figure 2. Graphics user interface 
 



 
Figure 3. Specification of polishing curves parameters. 
 

 
Figure 4. Specification of polishing curves geometry. 



 
 

 
Figure 5. Curve smoothing procedure 
 
 
 
 
 
 

 
Figure 6. Curve smoothing results. 



 
Figure 7. Polishing strips showing the part surface being covered. 
 

 
Figure 8. Polishing strips: the width is dependant on the pressure specified. 



 
Figure 9. Polishing curves defined over a door knob. 
 
 
 
 
 
 
 

 
Figure 10. Graph representing a sequence of three polishing curves, which 
can be performed by two, three and two polishing trajectories, respectively. 
 



 
 
Figure 11. Configuration space partition. 
 
 
 
 
 
 
 
 
 

 
Figure 12. Trajectory p obtained from the collision map (continuous line) and 
trajectory 'p  (dashed line) obtained by applying the smoothing procedure 
to p . 



  
 
Figure 13. Polishing curves defined over a semispherical part. 


