
From Graphical Task Specification to
Automatic Programming in Robotic

Polishing Systems

The use of robots to automate some tasks involving sensors and motion
planning strategies is not yet widely extended due to the difficulty of their
programming. Therefore, there is the need of systems that allow the user to
easily specify a high level description of the task (i.e. what is to be done) and
that allow to automatically program the robot motions from this description
(i.e. how will it be done).

Automatic polishing systems require the generation of collision-free
trajectories and the use of compliant control. Most of the approaches have
addressed this problem for polishing robots working on fixed parts. Nagata
and Watanabe [1] propose a joystick controlled teaching system that allows a
polishing robot with impedance control mode to perform polishing tasks on an
object with unknown shape. Active force control is also used in Wang and
Wang [2], that propose an automated finishing system for polishing a free
form surface using an active force controller mounted on the wrist of an
industrial robot equipped with a grinding tool. The system includes a path
planning module to plan zigzag and fractal paths on curved surfaces [3]. The
planning of collision-free paths is cluttered environments is tackled in
Takeuchi et al. [4,5], where an automatic programming system is developed
for a robot equipped with a polishing tool. The system allows the generation
collision-free paths for the polishing of workpieces with complicated shapes.
An automatic teaching system is proposed in [6] for a three-axis machining
centre and a two degrees of freedom robot. The system is driven by a user-
friendly program based on a CAM software to generate 5 d.o.f. NC data. The
program also includes a graphic simulator and a teaching mode. The system
is extended in [7] with a monitoring program that allows to operate the
polishing robot from a remote site.

This paper addresses the problem of the automatic programming of robotic
polishing tasks from a graphical high-level description of these tasks. We
consider polishing tasks of small parts, which are held by the robot gripper.
Compliance is assumed on the polishing station.

The paper presents a formal analysis of the problem and the solution
proposed, which is decomposed in two parts: the task specification module
and the task planning module. The task specification module is a graphical
user interface that allows the user to easily specify the polishing curves over
a CAD model of the part. The task planning module finds the time-optimum
sequence of collision-free trajectories to execute the task.

Overview

 Problem Statement

 Let us define:
• Polishing curve: Curve over the surface of a part to be polished

representing a strip that must be polished continuously. It is described
by an ordered set of reference frames over the surface of a part to be
polished. The z-axis of each reference frame is normal to the surface
and the x-axis points to the origin of the next reference frame.

• Polishing station: Set of locations over a polishing band which allows
the same surface finishing. Each location is described by a reference
frame.

• Trajectory: Set of ordered robot configurations, a configuration being
defined by the joint variables. They can be either a polishing trajectory,
that allows to follow a polishing curve at a given polishing location, or
a linking trajectory, that allows the robot to connect two polishing
trajectories through a collision-free path.

• Polishing motion sequence: The sequence of trajectories which allows
to follow all the polishing curves of a part in minimum time.

The aim of this project is to automatically synthesize the polishing motion
sequence from a user-defined graphical description of the polishing curves
over a CAD model of the part to be polished. To achieve this objective, the
three following topics must be tackled:

• Task Specification: Determination of the polishing curves over the
CAD model of the part in a user-friendly way.

• Optimization: Finding the best feasible sequence of polishing
trajectories for a given sequence of polishing curves, taking into
account that different trajectories can be used to follow each of the
polishing curves. This is due to several reasons like the different
locations of the selected polishing station, the different solutions of the
inverse kinematics or the two senses in which many curves can be
followed.

• Path planning: Finding collision-free linking trajectories through the
polishing cell.

Proposed approach

The proposed system is composed of a task specification module and a task
planning module.

The task specification module is a graphics user interface that copes with the
specification problem. The input file is a CAD model of the part to be polished
represented by a triangular mesh. The output of the specification module is
an ASCII file including information about the curves and the grasps:

• Each polishing curve is described by the following parameters:

- Sequence of reference frames.
- Allowed execution senses.
- Execution speed.
- Type of surface finishing.
- Width of the polishing band.
- Force specification in the z-direction of each reference frame.

• Set of grasps each one described by a homogeneous transformation

relating the reference frame of the part to the reference frame at the
wrist of the robot.

The task planning module copes with the optimization and path planning
aspects. The input files to this module are:

• The description of the polishing cell given by a VRML file with the
geometry of a set of convex solids representing the objects in the cell
(Figure 1).

• Set of polishing stations.

• The description of the polishing curves over the CAD model of the part

resulting from the specification module.

The output files of the planning module are the following:

• Execution file: A program that allows the execution of the task by the
robot. The program (in the present case a V+ program for a Stäubli
RX-90 robot) is a sequence of motions between robot configurations,
defined as joint-space motions for linking trajectories and as
cartesian-space motions for polishing trajectories, with force
references to be used by an active compliant polishing station.

• Simulation file: A VRML file which contains the robot motions for the

simulation of the task.

Task specification module

The task planning module was introduced in [8]. The graphics user interface
built as task specification module is called Polishing Curves Generator
(PCG). It is intended to be a user-friendly tool to specify the polishing curves
over a CAD model of the part, able to be used by an operator with few
computer knowledge. It works under Windows and it is programmed in C
using the openGL graphics library:

Main Features

• Visualization: The model of the part to be polished is represented by

a triangular mesh specified as an input VRML 1.0 file. The part can be
visualized as a solid or wired model, and can easily be rotated in any
direction (Figure 2).

• Specification of the curves parameters: Before entering the points

of a curve, a dialog box appears in order to select the following
parameters of the curve (Figure 3):

o Type of surface finishing: Identifier of the type of surface
finishing.

o Velocity: Linear velocity of the part at the contact point; for a
given pressure, an increase in the velocity results in a
decrease in material removal.

o Pressure: Force exerted by the polishing band at the contact
point.

o Width: Width of the polishing band.
The parameters of any existing curve can also be modified from the
menu.

• Specification of the curves geometry: The selection of the points of

a curve is done with the mouse over the CAD model of the part. The
middle points of the triangles of the triangular mesh are represented
as nodes of a graph. Each arc of the graph is composed of two
straight segments over the triangles connecting the corresponding
nodes through the middle point of the border edge. A curve is
specified as a set of subcurves, which are the segments connecting
two consecutive points introduced by the user. When the user enters
the two points of a subcurve, they are included as nodes of the graph
and the subcurve connecting them is generated using the Dijkstra
algorithm [9] to search the minimum-distance path. The nodes of the
solution path are called internal points of the subcurve.

The edit menu allows to add or to delete the final subcurve of any
curve. Figure 4 shows a curve composed of two subcurves. The
current subcurve (i.e. the one being just defined by the user) is
interactively computed as the user drags its end point to the desired
final position.

• Smoothing of the curves: A smoothing algorithm is applied to each

subcurve, by moving the points on the edges (Figure 5). Let P be one
of these points over a given edge e , and let v

r
 and w

r
 be the unitary

vectors on the subcurve with origin at P . Then P is moved along e in
the sense specified by the projection of v w+

r r
 on e an amount

() / 2v w+
r r

. The procedure is iteratively applied until its convergence.

Figure 6 shows the smoothing of the previous defined polishing curves
of Figure 4.

• Polishing strip: The strip polished by a given band depends on the

part material, the specified force and the velocity, and it is limited by
the width of the band. The strip is visualized over the part as the user

specifies the geometry of the curve, which allows the definition of the
minimum number of curves to cover all the part surface, as shown in
Figure 7. Figure 8 shows the strips polished for two polishing curves
that are defined to be polished at different pressure.

An Example

There are different types of pieces that need a polishing process. Among
them, bath tabs and door knobs are some of the more usually found in
robotized polishing workshops. Figure 9 shows the polishing curves defined
over a door knob. There are eleven polishing curves with a total of 825 points
that totally cover the knob surface. The curves have been defined in less
than five minutes by a trained user.

Task planning module

The task planning module was introduced in [10]. Its main characteristics are
the following. The module synthesizes the robot program in two steps:

• First, collision-free polishing trajectories for each polishing curve are
obtained. This is done considering the polishing locations of the
polishing stations that are consistent with the type of surface finishing
described for each polishing curve, and applying the robot inverse
kinematics1. The optimization problem is solved for the obtained
polishing trajectories.

• Second, the obstacle avoidance is tackled for the linking trajectories.

The submodules to perform these steps are described in the following
subsections.

Sequence optimization submodule

The optimization module finds the best feasible sequence of polishing
trajectories. It initially considers that a linking trajectory is a linear path in joint
space connecting the last and the first configurations of two consecutive
polishing trajectories, i.e. it does not take into account possible collisions.

The problem of searching the optimum sequence of trajectories can be
represented as the problem of searching the path of minimum cost through
an oriented graph (Figure 10), where:

• Each node represent a feasible trajectory to perform a polishing curve
(the nodes are grouped in columns representing the same polishing
curve); and the nodes in and fn represent, respectively, the initial and

the final configurations.

1 Collision-free condition is verified, for each trajectory, by checking a sample of the
its configurations.

• The arcs represent linking trajectories.

The cost of a trajectory represents the time needed for the execution of the
corresponding motions. It is computed as follows. Let iθ∆ be the angular

motion of joint i for a given linking trajectory, and max
iv its maximum angular

velocity. The minimum time to perform the motion of joint i is max/ iii vt θ∆= .
Then, the cost C of a trajectory is:

 ,i i jC t t t i j= ≥ ∀

If a linking trajectory involves a regrasping operation its cost is set to a very
high value.

The cost of the arcs of the graph is the sum of the cost of the linking
trajectory it represents and the cost of the previous polishing trajectory (i.e.
the one represented by the initial node of the arc).

The topology of the graph allows the use of the Bellmann algorithm [11] in
order to find the sequence of trajectories with minimum cost.

Due to the presence of an obstacle, the path planning module could modify a
linking trajectory with a considerable increase in the cost. In this case, all the
linking trajectories connecting the same two polishing curves should be,
probably, also modified. The costs of the modified linking trajectories replace
in the graph to the initial ones, and the optimization procedure is executed
again.

Path planning submodule

The path planning module uses a collision map based on an approximate cell
decomposition of the Configuration Space [12] corresponding to the three
first links of the robot. It is built for every polishing cell as shown in the
following algorithm.

Collision-map()

1. Partition the Configuration Space into a regular grid.
2. Use I-COLLIDE [13] to verify if for the centre of each cell there is

any intersection between the objects of the environment and the
robot, considering the three last joints and the grasped part
included in a sphere. [] Mark the cells as free cells if there is no
intersection, and as collision cells otherwise.

3. Expand the collision space by marking as collision cells those
that are neighbour to any collision cell found in the previous
step.

4. Built bigger parallelepiped cells by joining adjacent free cells
when possible.

5. Identify free subspaces.
6. Built a graph for each subspace, the nodes being the cells of the

partition and the arcs connecting adjacent cells.
7. Find the paths between any two nodes of the graph (using a

modified version of the Fulkerson algorithm [11])
END

As an example Figure 11 shows a partition of the Configuration Space with
three subspaces. It has been obtained from an initial grid of 64,000 cells
(Section 4.3).

The path planning module is devoted to find collision-free paths between the
contact configurations corresponding to the end and to the beginning of two
consecutive polishing trajectories.

Let ic and fc be two of such configurations. Let 'ic and ' fc be two

configurations located, respectively, at a given distance d from ic and fc in

the direction of the z-axis of the reference frame of the corresponding
polishing location. The distance d is defined by the user.

The path p connecting ic and fc is decomposed into:

ip : rectilinear path in cartesian space connecting ic with 'ic .

sp : a path connecting 'ic with ' fc in joint space.

fp : a rectilinear path in cartesian space connecting ' fc with fc .

These paths will be computed by the path planning algorithm, which uses the
following three tools:

1. Validation tool: Given a rectilinear path s in joint space, it verifies if s is
collision-free.

Validate(s)

Discretize s into a finite set of configurations.
each segment of p into a finite set of configurations
FOR each configuration:

Use I-COLLIDE [13] to detect any collision between the robot
(including the grasped part) and the objects of the environment.
IF a collision is detected RETURN non-valid

 END FOR
RETURN valid

END

2. Smoothing tool: Given a trajectory p composed of a set of linear

segments, it finds a collision-free smoother trajectory 'p .

Smooth(p)
1. Discretize each segment of p into a finite set of configurations
2. Generate a graph with these configurations as nodes, and with

the rectilinear paths connecting any two nodes as arcs
3. Apply the Dijkstra algorithm [?] to find the shortest path 'p

connecting the initial and the final nodes
4. Validate('p)
5. IF 'p is not valid, eliminate the segments of 'p that are not valid

and GOTO 3
6. ELSE RETURN 'p

END

3. Search tool: Given two configurations 'ic and ' fc finds a collision-free

path between them. Since the collision map is built in a very conservative
way, the two configurations 'ic and ' fc will probably not belong to any

free cell. However, it is assumed that a free path exists connecting them
to a free subspace, since the environment in a polishing cell will not be
very cluttered.

 Search('ic , ' fc)

1. Find two configurations ''ic , '' fc a free subspace, which are,

respectively, the closest configurations to 'ic and ' fc .

2. 'p = trajectory between ''ic and '' fc obtained from the collision

map
3. ' ' '' '' 'i i f fp p c c c c= ∪ ∪
4. Smooth(p)
5. RETURN p

 END

As an example Figure 12 shows the path p searched in the collision map and
the corresponding smoothed path 'p . Finally, the path planning algorithm is
as follows:

 Path-Planning(ic , fc , d)

Find 'ic and ' fc as the configurations located at a distance d from ic

and fc , respectively, in the direction of the z-axis of the reference

frame of the corresponding polishing location.
ip : rectilinear path in Cartesian Space between ic and 'ic

sp : rectilinear path in Joint Space between 'ic and ' fc .

fp : rectilinear path in Cartesian Space between ' fc and fc .

Validate(sp)
IF sp is not valid THEN sp = Search('ic , ' fc)

 RETURN (i s fp p p∪ ∪)
 END

A Case Study

This section presents the following example:
• The task is performed by a RX-90 Stäubli robot.
• The part to be polished is a semisphere.
• The polishing cell has two polishing stations, each one with only one

polishing location, and one obstacle (Figure 1).
• Four polishing curves have been described over the part (Figure 13):

o The first three, described by 10 reference frames, are to be
performed at polishing station number 1.

o The last one is a continuous curve described by 20 reference
frames; it is to be performed at polishing station number 2.

o All of them can be executed in either sense.
• Joint 6 has a finite range.
• The part can only be grasped in a way.

As a result of these initial conditions, and taking into account the inverse
kinematics, each polishing curve can be performed by 12, 8, 8 and 114
polishing trajectories, respectively.
The program runs in a Silicon Graphics workstation (175 MHz R10000
Indigo2). The two phases of the program synthesis are the following.

Otimization phase:
The graph is generated in 4.3 seconds and the optimum polishing trajectory
sequence is found in 0.01 seconds.

Path planning phase:

The collision map is generated with:

• An initial partition of 64,000 cells:
o Joint 1θ : Range divided in 40 intervals (each 8º over a range of

320º).
o Joint 2θ : Range divided in 40 intervals (each 6.88º over a

range of 275º).
o Joint 3θ : Range divided in 40 intervals (each 7.12º over a

range of 285º).
• A radius of the sphere covering the three last joints and the grasped

part equal to 400 mm.

The collision map is obtained in 43.89 seconds distributed as follows:
• The collision detection to determine the free cells is obtained in 40.10

seconds.
• The connectivity test to generate the subspaces and the grouping

algorithm to form bigger free cells is performed in 3.33 seconds. Three
subspaces are obtained, composed of 228, 83 and 55 cells
respectively.

• The modified Fulkerson algorithm to find the paths connecting any two
cells is performed in 0.44, 0.01 and 0.01, respectively, for each
subspace.

The modification of the Fulkerson algorithms allows to deal with rather big
graphs, making the grouping algorithm not critical.

The solution path is obtained in 65 seconds by:

• Fixing the distance d to 20 mm.
• Using the collision map to find sp , which is found to be composed of

20 configurations.
• Smoothing with a discretization of 100 points per arc.
• Validating the arcs with a step less than 3 degrees.

The input and output files of this example, including the simulation, are
shown in http://www.ioc.upc.es/ rosell/polishing

Conclusions

This paper presents a graphical task-level robot programming tool for
polishing parts held by the robot gripper. The proposed approach allows a
user-friendly manner to specify the polishing curves over a CAD model of the
part. The user also specifies the width of the abrasive polishing bands to be
used and the pressure exerted. The graphical user interface aids the user in
verifying that the whole surface is to be correctly polished. Once the task
specification is done, a task planning module provides the algorithms to
guarantee the time-optimum sequence of robot trajectories to perform the

polishing of the curves over the part, avoiding collisions with the obstacles of
the cell. The proposed approach can be easily extended to other similar
tasks like cutting or material dispensing.

References

[1] F. Nagata and K. Watanabe, “Teaching system for a polishing robot using
a game joystick,'' in Proc. of the 39th SICE Annual Conference, pp.179 -184,
2000.

[2] Y. T. Wang and C. P. Wang, “Development of a polishing robot system,''
in Proc. of the 7th IEEE Int. Conference on Emerging Technologies and
Factory Automation, ETFA '99, vol. 2, pp. 1161 -1166, 1999.

[3] Y. T. Wang and Y. J. Jan, “Path planning for robot-assisted grinding
processes,'' in Proc. of the EEE Int. Conference on Robotics and
Automation, vol. 2, pp. 331-336, 2001.

[4] Y. Takeuchi, D. Ge, and N. Asakawa, “Automated polishing process with
a human-like dexterous robot,'' in Proc. of the IEEE Int. Conference Robotics
and Automation, vol. 3, pp. 950 -956, 1993.

[5] D. Ge, Y. Takeuchi, and N. Asakawa, “Dexterous polishing of overhanging
sculptured surfaces with a 6-axis control robot,'' in Proc. of the IEEE Int.
Conference Robotics and Automation, pp. 2090 -2095, 1995.

[6] M. C. Lee, S. J. Go, J. Y. Jung, and M. H. Lee, “Development of a user-
friendly polishing robot system,'' in Proc. of the IEEE/RSJ Int. Conference
on Intelligent Robots and Systems, vol. 3, pp. 1914 -1919, 1999.

[7] S. J. Go, M. C. Lee, and B. S. Kim, “User-friendly automatic polishing
robot system and its remote operation based on network,'' in Proc. of the
IEEE Int. Symp. on Industrial Electronics, vol. 3, pp. 1435 -1440, 2001.

[8] J. Rosell, L. Basañez, and I. Díaz, “Graphical task-level robot
programming for polishing and grinding,'' in Accepted to the 15th IFAC World
Congress, 2002.

[9] E. W. Dijkstra, “A note on two problems in connection with graphs,''
Numerische Mathematik, vol. 1, pp. 269 -271, 1959.

[10] J. Rosell, J. Gratacòs, and L. Basañez, “An automatic programming tool
for robotic polishing tasks,'' in Proc. of the IEEE Int. Symp. On Assembly and
Task Planning ISATP'99, pp. 250-255, 1999.

[12] B. Roy, Algèbre moderne et théorie des graphes, Dunod, 1970.

[12] J. C. Latombe, Robot Motion Planning, Kluwer Academic Press, 1991.

[13] J. Cohen, M. Lin, D. Manocha, and K. Ponamgi, “I-collide: An interactive
and exact collision detection system for large-scaled environments,'' Proc.
 of the ACM Int. 3D Graphics Conference, pp. 189-196, 1995.

Figure 1. Polishing cell

Figure 2. Graphics user interface

Figure 3. Specification of polishing curves parameters.

Figure 4. Specification of polishing curves geometry.

Figure 5. Curve smoothing procedure

Figure 6. Curve smoothing results.

Figure 7. Polishing strips showing the part surface being covered.

Figure 8. Polishing strips: the width is dependant on the pressure specified.

Figure 9. Polishing curves defined over a door knob.

Figure 10. Graph representing a sequence of three polishing curves, which
can be performed by two, three and two polishing trajectories, respectively.

Figure 11. Configuration space partition.

Figure 12. Trajectory p obtained from the collision map (continuous line) and
trajectory 'p (dashed line) obtained by applying the smoothing procedure
to p .

Figure 13. Polishing curves defined over a semispherical part.

